Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Virol ; 96(1): e0169521, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1816694

RESUMEN

The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.


Asunto(s)
Betacoronavirus 1/fisiología , Infecciones por Coronavirus/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Gránulos de Estrés/metabolismo , Replicación Viral/fisiología , eIF-2 Quinasa/metabolismo , Animales , Betacoronavirus 1/metabolismo , Línea Celular , Infecciones por Coronavirus/virología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico , Ratones , Fosforilación , Biosíntesis de Proteínas , Transducción de Señal , Respuesta de Proteína Desplegada
2.
FEBS Lett ; 595(23): 2872-2896, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1516705

RESUMEN

The current work investigated SARS-CoV-2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC-based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress-stimulated NCAP to undergo liquid-liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS-CoV-2 NCAP.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/metabolismo , Gránulos de Estrés/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , ADN Helicasas/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/química , Ubiquitina Tiolesterasa/metabolismo , eIF-2 Quinasa/metabolismo
3.
J Biol Chem ; 297(6): 101399, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1509947

RESUMEN

The nonstructural protein 1 (nsp1) of severe acute respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2 is a critical viral protein that suppresses host gene expression by blocking the assembly of the ribosome on host mRNAs. To understand the mechanism of inhibition of host gene expression, we sought to identify cellular proteins that interact with nsp1. Using proximity-dependent biotinylation followed by proteomic analyses of biotinylated proteins, here we captured multiple dynamic interactions of nsp1 with host cell proteins. In addition to ribosomal proteins, we identified several pre-mRNA processing proteins that interact with nsp1, including splicing factors and transcription termination proteins, as well as exosome, and stress granule (SG)-associated proteins. We found that the interactions with transcription termination factors are primarily governed by the C-terminal region of nsp1 and are disrupted by the mutation of amino acids K164 and H165 that are essential for its host shutoff function. We further show that nsp1 interacts with Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and colocalizes with G3BP1 in SGs under sodium arsenite-induced stress. Finally, we observe that the presence of nsp1 disrupts the maturation of SGs over a long period. Isolation of SG core at different times shows a gradual loss of G3BP1 in the presence of nsp1.


Asunto(s)
COVID-19/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/metabolismo , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/metabolismo , Biotinilación , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteómica , Proteínas Ribosómicas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/fisiología , Síndrome Respiratorio Agudo Grave/virología , Gránulos de Estrés/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA